
Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 1
The Application Program's Role

Using the display controller to create and manage GEWorlds

The application program calls display controller routines to
create and manage Graphic Elements worlds. Remember that
“application program,” as we are using it here, refers to any
software module which creates and manipulates GEWorlds.

The application creates a Graphic Elements world and installs it
into a window by calling

GEWorldPtr NewGEWorld(CWindowPtr worldWindow, Rect *worldRect,
CTabHandle worldColors);

Where:

— worldWindow is the (existing) color window into which the new Graphic Elements
world is to be installed.

— worldRect is the bounding rectangle of the new GEWorld, in the coordinate system
of this window.

— worldColors is nil (if the system palette is to be used) or is the handle to a color
table suitable for use with an 8-bit-deep GWorld.

NewGEWorld returns nil if it cannot obtain the memory space it needs for its components.

All of the Graphic Elements functions your application program will call to deal with this
world and its elements require a GEWorldPtr as one of their parameters. If there is only
one GEWorld in the window, as is usually the case, this pointer can conveniently be stored
into the window's wRefCon field:

SetWRefCon(myWindow, (long) myGEWorld);

It can then be passed to Graphic Elements functions as

(GEWorldPtr) GetWRefCon(myWindow)

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 2
A newly created Graphic Elements world is inactive, and must be activated to be displayed
on the screen. GEWorlds are activated and deactivated by calling:

void ActivateWorld(GEWorldPtr world, Boolean turnItOn);

Where:

— world is a GEWorld obtained by calling NewGEWorld(),

— turnItOn is true to activate world or false to deactivate it.

The application program should normally deactivate a GEWorld only when that world's
window is hidden.

While a Graphic Elements world exists and is active, it requires attention from the
application program at three well-defined times. First, the application must allow the
world to update itself frequently, normally once every time through its main event loop.
Second, the world must be redrawn whenever the application receives an update event for
the window containing it. Finally, if the Graphic Elements in the world include any sensor-
type elements (Graphic Elements which respond to the user's mouse clicks), the application
must give them an opportunity to perform their actions whenever the user presses the
mouse button in the window containing the world.

Once each time through its main event loop, the application program should call:

void DoWorldUpdate(GEWorldPtr world, Boolean invalidate);

Where:

— world is an active Graphic Elements world created by the application,

— invalidate is true if the entire world is to be redrawn or false if only changes since
the last call to DoWorldUpdate() are to be drawn.

When the application calls DoWorldUpdate() periodically from its main event loop,
invalidate should be false. When the application receives an update event for the window
containing the Graphic Elements world, it should call DoWorldUpdate() with invalidate true
so that the entire world will be redrawn.

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 3
NOTE!! When calling DoWorldUpdate() in response to an update event, call it after calling
EndUpdate() for the window containing the Graphic Elements world. For example:

void DoUpdate(WindowPtr window)
{

if (window == myWindow)
{

SetPort((GrafPtr) window);
BeginUpdate(window);
//Other drawing code here…
EndUpdate(window);
DoWorldUpdate((GEWorldPtr)

GetWRefCon(myWindow), true);
}

}

If a Graphic Elements world contains any sensors, they should be given an opportunity to
act whenever 1) the application receives a mouseDown event for the window containing
that world, and 2) the window part returned by FindWindow() equals inContent. The
application handles this by calling:

Boolean MouseDownInSensor(GEWorldPtr world, Point gMousePt);

Where:

— world is a Graphic Elements world belonging to the window for which the
mouseDown event was received,

— gMousePt is the point where the mouse button was pressed, in global coordinates
as retrieved from the event record.

If MouseDownInSensor() returns true, one of the interactive Graphic Elements in world has
completely handled the mouseDown event.

When the application program has completely finished using a GEWorld, the memory it
occupies can be freed by calling

void DisposeGEWorld(GEWorldPtr world);

Where:

— world is the Graphic Elements world to be disposed of.

NOTE!! DisposeGEWorld() disposes of all Graphic Elements in a GEWorld. However, it
does not free any memory that the application may have allocated and assigned to the
Graphic Element fields drawData or changeData (see the section “Graphic Element
Dynamics”). The application program is responsible for releasing any memory pointed to
by these fields.

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 4

GEWorld Standard Time

All time values in the Graphic Elements system are specified in milliseconds. In general,
the display controller handles all scheduling and timing for a GEWorld automatically.
However, the application can explicitly control the flow of time in a GEWorld. The display
controller provides the routines used for this purpose.

Time in a GEWorld starts and stops automatically when the world is activated and
deactivated. However, the application program can explicitly “freeze” and “unfreeze” all
action within a Graphic Elements world by calling:

void StopGETimer(GEWorldPtr world);
void StartGETimer(GEWorldPtr world);

Where:

— world is the GEWorld for which time is to start or stop.

The application can find out “what time it is” in a GEWorld — how many
milliseconds it has been since the world was created — by calling:

unsigned long CurrentGETime(GEWorldPtr world);

Where:

— world is the GEWorld in question.

The rate at which time passes in a Graphic Elements world is variable. This rate is
represented by an unsigned 4-byte fixed-point number, with the implied hexadecimal point
after the first two bytes. Thus a value of 1 is represented as 0x00010000, which is
predefined in the Graphic Elements system as geTimerStdRate. When this rate is used, 1
millisecond passes in the Graphic Elements world for each millisecond that passes in the
real world. A rate of 0x00020000 would cause time to pass twice as fast in the GEWorld as
in the real world; a rate of 0x00008000, half as fast. The application program can get the
current rate of a Graphic Elements world by calling:

unsigned long GetGETimerRate(GEWorldPtr world);

Where:

— world is the GEWorld in question.

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 5
The application can set a new time rate for a Graphic Elements world by calling:

void SetGETimerRate(GEWorldPtr world, unsigned long newRate);

Where:

— world is the GEWorld in question,

— newRate is a fixed-point number representing the new rate, as defined above.

Other display controller routines for manipulating GEWorlds

The display controller provides other functions that may be called by the application
program under specific circumstances.

When it is created, a new Graphic Elements world has no specified maximum projection
rate — new frames are drawn and copied to the screen every time one or more elements
move or change. Under some circumstances, the application can control the amount of
processor time used to maintain a Graphic Elements world by specifying a minimum
projection interval.

The maximum projection rate (minimum projection interval) attainable under a given set of
conditions depends on several factors. The speed of the processor and graphics hardware
are of primary importance. The number of objects in a given world, the sizes of those
objects, and the rates at which they must be redrawn because of movement, frame
changes, etc. are also extremely important. Finally, other processing performed by the
application on each iteration of its main event loop can consume amounts of time which
may be difficult to quantity. For example, the amount of time consumed by a call to
WaitNextEvent() can vary greatly, depending on what other application programs are
running when it is made. Thus the minimum projection interval in a Graphic Elements
world is only a minimum — there is no way for the world to “guarantee” that it will run at a
certain speed.

The application program can retrieve the current minimum projection interval of any world
by calling

short GetProjectionRate(GEWorldPtr world);

Where:

— world is the Graphic Elements world in question.

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 6
The application program can set a new minimum projection interval by calling:

void SetProjectionRate(GEWorldPtr world, short newMSPerFrame);

Where:

— world is the Graphic Elements world in question,

— newMSPerFrame is the new minimum projection interval in milliseconds.

Occasionally, an application program may need to move an entire Graphic Elements world
in relation to its window. The program accomplishes this by calling

void MoveGEWorld(GEWorldPtr world, short dh, short dv);
Or

void MoveGEWorldTo(GEWorldPtr world, short h, short v);

Where:

— world is the Graphic Elements world being moved,

— for MoveGEWorld, dh and dv are the horizontal and vertical distances to move the
GEWorld, or

— for MoveGEWorldTo, h and v are the new horizontal and vertical locations of the
upper left-hand corner of the GEWorld, in window coordinates.

Other possibilities

It is usually best to keep code which actually manipulates individual Graphic Elements
separate from the main line of the application program (or other enclosing aoftware entity),
for reasons of portability and maintainability. But the Graphic Elements system itself does
not enforce any such limitations. The application is free, at any time, to explicitly do
anything to any element that the element might do to itself. The complete list of possible
actions depends on the type of Graphic Element in question — see the section “Standard
Graphic Element Types” for examples.

